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ABSTRACT 
Modelling realistic human behaviour, including decision-making and creativity, is the hardest and most 
complex challenge in combat simulation. Behaviour trees (BTs) is a relatively new and increasingly popular 
approach for developing behaviour models for artificial intelligence (AI) and intelligent agents. The 
approach has become especially popular for creating behaviour models for non-player characters (NPCs) in 
computer games, robots, and autonomous vehicles. 

BTs are represented as directed trees with a hierarchy of control flow nodes and task nodes that control the 
behaviour of an agent. What makes BTs so powerful is their composability and modularity. Task nodes and 
control flow nodes are composed into subtrees which represent more complex actions, and these actions can 
be composed into higher level behaviours. 

In this paper we will give an introduction to BTs based on available literature and discuss the possibilities 
and limitations of employing this modelling technique for creating behaviour models for computer-generated 
forces (CGF) in combat simulations. Furthermore, we will give a concrete example of how to create a BT 
from a textual description of a battle drill, and provide tips and tricks on how to create BTs in general. 
Finally, we will summarize our experiences from working with BTs. 

1.0 INTRODUCTION 

Modelling realistic human behaviour, including decision-making and creativity, is the hardest and most 
complex challenge in combat simulation [1]. Behaviour trees (BTs) are a relatively new and increasingly 
popular approach for developing behaviour models for artificial intelligence (AI) and intelligent agents. The 
approach has become especially popular for creating behaviours for non-player characters (NPCs) in 
computer games, robots, and autonomous vehicles. The first high-profile computer game that used BTs was 
Halo 2 from Bungie Software [2], which was released in 2004. 

Finite state machines (FSMs) have long been the most dominant technique for creating behaviour models for 
computer-generated forces (CGF) in military simulations [3][4], but BTs are now also starting to become a 
popular technique for developing behaviour models for automated and semi-automated constructive units in 
military simulation systems. FSMs are well suited for implementing well-defined doctrinal behaviour of 
limited complexity [4]. However, the problem with FSMs is that they tend to become very complex and un-
manageable. The reason for this is that the number of states increases exponentially with the number of non-
mutually exclusive behaviours that are represented [5][6], and as the number of states increases, the number 
of possible transitions between the states also increases exponentially [7]. 
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BTs have some similarities to hierarchical FSMs, but the key difference is that their main building blocks are 
tasks rather than states. BTs are represented as directed trees1 with a hierarchy of control flow nodes and task 
nodes that control the behaviour of an agent. The control flow nodes are interior nodes (nodes with one or 
more children) and contain some decision logic for flow control. The task nodes are leaf nodes (nodes 
without children) and contain conditional tasks which test some property in the simulated environment (or 
the real world in the case of robots and autonomous vehicles), or action tasks which alter the state of the 
simulation (or the real world) in some way [5]. 

What makes BTs so powerful is their composability and modularity. Task nodes and control flow nodes are 
composed into subtrees which represent more complex actions, and these actions can be composed into 
higher level behaviours [8]. Task nodes and action subtrees can be reused, and different subtrees can be 
developed independently of each other. 

BT editors with graphical user interfaces (GUIs) enable users (e.g. military simulation users) to create 
modular behaviour models without needing programming skills. Furthermore, to reduce complexity and 
ensure readability of the graphical model of large BTs, they can be decomposed into smaller subtrees. 
Examples of AI engines (or AI middleware) for military simulation systems that use BTs are Virtual 
Battlespace (VBS) Control from Bohemia Interactive Simulations (BISim) and MASA Life from MASA 
Group. 

We conduct entity-level, constructive simulations of battalion- to brigade-level operations for 
experimentation and analysis purposes [5][9][10]. To support this work we are developing human behaviour 
models for semi-automated forces (SAF) in VBS, using the new AI framework VBS Control. 

Since BTs are a quite new technique for developing behaviour models, there is still not very much 
documentation on how BTs work and how to create BTs. Most BT tutorials found on the Internet focus only 
on the basic principles of BTs, and how to implement BT functionality in an AI engine, but there are few 
examples on how to create working BTs. 

First, in this paper, we briefly describe the background for this work. Secondly, we give an introduction to 
BTs and look at the process of developing BTs. Then, we look at the advantages and limitations of BTs and 
some of the extensions to the BT concept that have been proposed. After this, we describe how we are using 
BTs to build a library of behaviour models of battle drills for mechanized infantry platoons and give a 
concrete example of how to create a BT from a textual description of a battle drill. Finally, we summarize 
our experiences from working with BTs and outline our plans for further work. 

2.0 BACKGROUND 

At the Norwegian Defence Research Establishment (FFI) we conduct simulations of land force operations 
for experimentation and analysis purposes. One of the main research questions we are investigating is how to 
increase combat effectiveness in land force operations, and as part of this work we assess and compare the 
performance of different land force structures, which may vary with regard to: composition of material and 
equipment, tactical organization, or operational concept. Our simulation experiments are conducted as what 
can be described as simulation-supported, two-sided (Blue and Red) wargames, where military officers 
participate as players/operators on both sides [5][9][10]. 

Based on previous simulations, we have identified two main factors that have the potential to improve the 
fidelity of our constructive simulations: (1) increased terrain resolution, and (2) better tactical artificial 
intelligence (AI) that can take advantage of this terrain [5][9][10]. For example, we expect that these two 
factors will result in more realistic detection and engagement distances in our constructive simulations 
                                                      
1 Strictly speaking, a BT is a directed acyclic graph (DAG) since the same node or subtree can be used several places in the 
structure, and a node can thus have more than one parent. 
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[9][10]. Furthermore, since we are using constructive simulation to experiment with utilization of new 
technologies and new concepts on the battlefield, we need an easy way to make changes to behaviour models 
for experimenting with different tactical behaviours of entities and platoons. The composability, modularity, 
and readability of BTs make this modelling technique very suitable for our use. 

We have composed a simulation environment where the ground-to-ground combat entities are simulated in 
VBS from BISim, and the air and air defence entities are simulated in VR-Forces from VT MAK. All the 
constructive, semi-automated entities are controlled from an in-house developed web-based graphical user 
interface (GUI), which has been named webSAF [9][10]. The entities simulated in VBS use behaviour 
models developed in VBS Control. VBS Control is a new framework for BT-based AI in VBS. To get better 
tactical AI in our simulations, we are currently building a BT-based library of behaviour models for the most 
important battle drills for mechanized infantry platoons. 

3.0 INTRODUCTION TO BEHAVIOUR TREES 

BTs are a relatively new technique for developing behaviour models. Nevertheless, BTs have reached a 
certain maturity and have been treated in at least two Game AI textbooks [8][11]. Furthermore, a number of 
BT tutorials can be found on the Internet. The available descriptions of BTs differ slightly, and a suggested 
unified framework for BTs was published in 2014 [12]. 

3.1 Structure 
BTs are graphically represented as directed rooted trees. Directed rooted trees are composed of nodes and 
directed edges connecting the nodes. Trees cannot contain any cycles. For a pair of connected nodes, the out-
going node is called the parent, and the incoming node is called the child. A parent node has one or more 
children. Rooted trees have one parentless node that is called the root. Nodes without children are called 
leaves. In BTs the edges are directed away from the root and towards the leaves. BTs are usually drawn with 
the root at the top, and the children are usually ordered from left to right. 

3.2 Traversal 
A BT represents all the possible courses of action an agent can take, and a path from the root to one of the 
leaf nodes typically represents one possible course of action [8]. BTs are essentially traversed in a depth-first 
manner (from left to right). Starting from the root, the leftmost children are visited first until a leaf node is 
reached, before backtracking and visiting the next child (to the right) of the nearest node with more children. 

An AI engine will usually traverse a BT from the root for each simulation step or tick, executing each node 
down the tree. The simulation step or tick may correspond to the frame rate of the simulation, but can also be 
longer. The simulation step represents the maximum time it will take for the behaviour model to detect, and 
be able to react to, a change in the environment. For a model representing human behaviour this should not 
be longer than a typical human reaction time (usually between 0.2 and 0.4 seconds). 

During the traversal of a BT each executed child node will return one of the following three status values to 
its parent: 

1. Success: The node achieved its goal. 

2. Failure: The node failed. 

3. Running: The node did not finish its execution within the current simulation step and is still running. 
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The running status is typically returned by tasks that take some time to complete, for example moving from 
one place to another. 

Each time a BT is executed it either finishes by returning success or failure back to the root node, or the 
execution ends up in a node representing a task that takes some time to execute and thus is still running at the 
end of the simulation step. At the next simulation step, the AI engine can either be designed to continue the 
BT execution at the leaf node that returned running, or more commonly, to restart the BT execution at the 
root. Starting at the root at each simulation step allows the behaviour model to be more reactive to context 
changes, which is an important property in dynamic environments. Of course, if there are no context changes 
the BT execution will end up in the node that returned running at the previous simulation step and continue 
the execution of this task. 

3.3 Types of Nodes 
The main categories of nodes in a BT are control flow nodes (or composite nodes), task nodes (or execution 
nodes), and decorator nodes. In addition, a BT can have reference nodes, which are just references to a 
subtree. 

3.3.1 Control Flow Nodes 

The control flow nodes are the interior nodes in a BT, and they always have one or more children. There are 
three types of control flow nodes: selector nodes, sequence nodes, and parallel nodes. 

3.3.1.1 Selector Nodes 

A selector node2 will start to execute each of its children from left to right and return success as soon as one 
of the children returns success. If none of the children returns success, the selector node will return failure. If 
the child that is currently being executed returns running at the end of a simulation step, the selector node 
will return running. Figure 3-1 shows the graphical representation of a selector node with N children. The 
selector node is denoted by a question mark (?). 

Selector nodes are typically used when a set of actions represents alternative ways of reaching a goal. Some 
BT implementations also define non-deterministic or random selector nodes, where the children are executed 
in a non-deterministic order. 

 

Figure 3-1: Graphical representation of a selector node with N children. 

3.3.1.2 Sequence Node 

A sequence node will start to execute each of its children in sequence from left to right and return failure as 
soon as one of the children returns failure. If all the children return success, the sequence node will return 
success. If the child that is currently being executed returns running at the end of a simulation step, the 

                                                      
2 Selector nodes are sometimes called fallback nodes. 
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sequence node will return running. Figure 3-2 shows the graphical representation of a sequence node with N 
children. The sequence node is denoted by a rightwards arrow (→). 

Sequence nodes are typically used when a set of actions needs to be carried out in a particular order. Some 
BT implementations also define non-deterministic sequence nodes, where the children are executed in a non-
deterministic order. 

 

Figure 3-2: Graphical representation of a sequence node with N children. 

3.3.1.3 Parallel Node 

A parallel node will execute all of its children in parallel. If one child returns failure, the parallel node will 
return failure and terminate the execution of all the other children. If all the children complete successfully, 
the parallel node will return success. If none of the children have returned failure, and one or more children 
return running at the end of a simulation step, the parallel node will return running. Figure 3-3 shows the 
graphical representation of a parallel node with N children. The parallel node is denoted by rightwards paired 
arrows (⇉). 

Parallel nodes are typically used when a set of actions can be carried out at the same time. Some BT 
implementations define parallel nodes with different criteria for success, for example return success if more 
than M out of N children return success, or only return failure if all of the children return failure. 

 

Figure 3-3: Graphical representation of the parallel node. 

3.3.2 Task Nodes 

The task nodes are the leaf nodes in a BT. There are two types of task nodes: condition nodes and action 
nodes. 

3.3.2.1 Condition Nodes 

A condition node checks if a given condition within the simulated environment (or the real world) is ful-
filled. If the condition is fulfilled it returns success, otherwise it returns failure. A condition task will always 
complete within a simulation step, so this task will never return running. Figure 3-4 (to the left) shows the 
graphical representation of the condition node. The “Condition” text label will typically be a description of 
the condition. 



Using Behaviour Trees to Model Battle Drills for Computer-Generated Forces      

1 - 6 STO-MP-MSG-171 

 

Figure 3-4: Graphical representation of the condition node (to the left) and 
the action node (to the right). 

3.3.2.2 Action Nodes 

An action node performs an action which alters the state of the simulated environment (or the real world) in 
some way. If the action was completed, the action node will return success, and if the action could not be 
completed, the action node will return failure. Running will be returned if the action was not finished within 
the current simulation step. Figure 3-4 (to the right) shows the graphical representation of the action node. 
The “Action” text label will typically be a description of the action. 

3.3.3 Decorator Nodes 

A decorator node is a special type of node that has only one child and modifies the behaviour of the child 
according to some predefined rule. Examples of decorators are inverter nodes that invert the result from the 
child (i.e. success to failure and failure to success), succeeder nodes that always return success, and repeater 
nodes that repeat the execution of the child a specific number of times or until a given condition is fulfilled. 
A BT can have several subsequent decorators. Figure 3-5 shows the graphical representation of the decorator 
node. The “Decorator” text label will typically be a description of the rule of the decorator. 

 

Figure 3-5: Graphical representation of the decorator node and its child. 

3.3.4 Reference Nodes 

A reference node is simply a proxy node that refers to a particular subtree. A particular subtree may be used 
several places in a BT. 

3.3.5 Summary of Node Types 

Table 3-1 summarizes the properties of the different types of nodes in a BT. 

Table 3-1: Properties of the different types of nodes in a BT. 

Node type Symbol Success Failure Running 

Selector ? If one child returns success If all children return failure If one child returns running 

Sequence → If all children return success If one child returns failure If one child returns running 
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Parallel 
 

If all children return success If one child returns failure 
If one or more children return running 
(and none of the children have returned 
failure) 

Action Text label If action was completed If action could not be completed If action is still running 

Condition Text label If condition is fulfilled If condition is not fulfilled Never 

Decorator Text label According to rule According to rule According to rule 

 

3.4 Data Store 
What makes BTs highly modular and flexible, is the concept of having a single common interface for all 
nodes. This allows that any task or subtree can be placed at any position in the BT. For this to work, the data 
used by the BT needs to be decoupled from the interface between the nodes. This is usually done by having 
an external data store, called a blackboard, for all the data that the BT needs. 

3.5 Performance 
The performance of a BT will depend on the complexity of the task nodes. If we assume that the task nodes 
(leaf nodes) are of O(1) in both performance and memory usage3, the average performance for a BT will be 
of O(log n) and the memory usage for a BT will be of O(n), where n is the number of nodes in the BT [8]. 

4.0 DEVELOPING BEHAVIOUR TREES 

Development of BTs is an iterative process, where we typically start with a simple BT and then make it more 
complex by adding more and more branches of alternative courses of action for achieving a goal. Generally, 
in a BT, the left branch of the tree (starting from the root) will contain the high-priority behaviours, while the 
right branch of the tree will contain the low-priority behaviours. The default or unconditional behaviour will 
therefore be found at the far right side of a BT. 

An important question when designing a BT is what functionality to address in the BT structure, and what 
functionality to take care of inside the action nodes [13]. Generally, most modularity is achieved if each task 
can be broken into the smallest parts that can usefully be composed [8]. However, a BT that is too fine 
grained may be unnecessarily complex [13]. As a rule of thumb, a BT should be decomposed into the 
smallest action nodes which do not have subparts that are likely to be usable as stand-alone actions in other 
parts of the BT. 

Developing and editing BTs are mostly done using visual editors, but BTs can also be automatically 
generated from examples of expert behaviour by using machine learning techniques [14][15]. 

4.1 Examples 

4.1.1 Example 1: Move into Room (Simple) 

Figure 4-1 shows an example of a simple BT for moving into a room. When this BT is executed the selector 
node will first try to execute the left child, which is a sequence node. The sequence node will first execute 
the condition node, which checks if the door is open. If the door is open, the sequence node will execute the 

                                                      
3 O notation (O stands for order) classifies algorithms according to how their running time or memory requirements grows as the 

number of elements processed by the algorithm grows. 

→ → 
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next child, which is an action node that moves the agent into the room. If the door is closed, the sequence 
node will return failure, and the selector node will try to execute the right child, which is also a sequence 
node. This sequence node will try to execute the following three action nodes: “Move to door”, “Open door” 
and “Move into room”. If any of these three action nodes fails, the whole BT will return failure. 

 

Figure 4-1: Simple BT for moving into a room. 

4.1.2 Example 2: Move into Room (More Advanced) 

Figure 4-2 shows a slightly more advanced BT for moving into a room. Here the “Open door” action node 
from Figure 4-1 has been extended to a subtree starting with a selector node. This selector node will first try 
to execute the left child, which is a sequence node. The sequence node will first execute the condition node, 
which checks if the door is locked. If the door is locked, the sequence node will execute the next child, which 
is an action node that unlocks the door. If the sequence node fails, the selector node will try to execute the 
right child, which is also a sequence node. This sequence node will try to execute the action node “Kick 
door”, and then execute a condition node which checks if the door is now open. 

 

Figure 4-2: More advanced BT for moving into a room. 
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5.0 ADVANTAGES, LIMITATIONS AND POSSIBLE EXTENSIONS OF 
BEHAVIOUR TREES 

In AI research BTs are classified as a simple form of planning referred to as reactive planning [8]. To be 
reactive means to be able to quickly react to changes. Behaviour models using reactive planning techniques 
are suitable for handling highly dynamic and unpredictable environments, such as a modern battlefield. 

From a theoretical point of view, there is no difference between BTs and FSMs regarding what kind of 
behaviour that can be modelled [12]. In practice however, whereas FSMs tend to become impractical and un-
manageable as the complexity of the behaviour model grows, complex BTs are much easier to maintain and 
extend. 

5.1 Advantages 
The most important advantages with BTs can be summarized as follows: 

• BTs are highly composable. Composability means the ability to combine components into various 
combinations for building different systems. 

• BTs are highly modular. That a system is modular means that it can be subdivided into modules 
(tasks or subtrees for BTs), and that any module in the system can be replaced by any other module. 
This also means that the modules can be developed independently of each other. 

• BTs are reactive, which means that they can react quickly to changes. 

• BTs are human readable and can be created by visual editors with GUIs. 

• BTs are suitable for automatic generation, for example by using machine learning. 

All these properties make BTs well suited for developing human behaviour models of moderate complexity 
for semi-automated forces (SAF) in constructive simulations. 

5.2 Limitations 
The most important limitations of BTs can be summarized as follows: 

• BTs are poor at modelling the uncertainty in situations where there are multiple valid options to 
choose from [11]. 

• It is somewhat cumbersome to represent typical state-based behaviour using BTs [8]. 

• There are limitations on how large and complex behaviour models can be when using BTs. For very 
large BTs, the cost of having to execute the whole tree from the beginning for each simulation step 
will eventually cause performance issues, especially in simulations with a high number of 
constructive entities. 

5.3 Possible Extensions 
To overcome the limitations of standard BTs, several extensions have been proposed. The first limitation is 
mainly related to the properties of the selector node. One simple way to vary the order in which the selector 
node executes its options is to introduce non-deterministic selector nodes. This will lead to more 
unpredictable behaviour. A more comprehensive way to address this limitation is to combine BTs with 
utility-based decision-making, as suggested in [16]. Here, a utility selector node is introduced, which when 
executed first queries all of its children for a utility value, and then uses these values to determine in which 
order the children will be executed. The calculation of utility values must typically be done by the task 
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nodes, and then propagated up the tree structure. This method will, however, require additional computing 
power for each simulation step. 

A simple solution which will overcome the second limitation is to combine BTs with FSMs [8]. Instead of 
having one large BT representing all the possible behaviours of an agent, it will then be possible to have 
different context-sensitive BTs for each of the states the agent can be in, and a simple FSM on top that 
handles the transitions between the states. 

The limitation regarding performance issues with large BTs is harder to solve without compromising the 
reactivity of the BTs. To avoid unwanted re-execution of all control flow nodes for each simulation step, 
control flow nodes with memory have been suggested. The control flow nodes with memory will then 
remember what value each child has returned, and avoid re-executions of the children until the whole control 
flow node has returned success or failure [13]. This approach will, however, make the BT less reactive, and 
will therefore not be suitable for use in dynamic and unpredictable environments. 

6.0 BUILDING A LIBRARY OF BEHAVIOUR MODELS OF BATTLE DRILLS 

As mentioned, to get better tactical AI in our simulations, we are currently building a BT-based library of 
behaviour models of the most important battle drills for mechanized infantry platoons, including dismounted 
soldiers and combat vehicles like infantry fighting vehicles (IFVs) and main battle tanks (MBTs). The 
behaviour model library will have a hierarchical structure with models of battle drills for entities, squads, and 
platoons for dismounted soldiers, and entities and platoons for combat vehicles. Human operators will give 
orders to the semi-automated forces (SAF) at the squad or platoon level, but we want the entities to be 
completely autonomous within a squad for dismounted soldiers and within a platoon for combat vehicles. In 
the future, we envisage building behaviour models for a set of more generic battle drills at the company 
level, so that more general orders can be given at this level. It is a goal that one operator should be able to 
control an entire battalion of manoeuvre forces. 

The workflow for creating the behaviour models follows a bottom-up approach, where we first model a set 
of low-level actions that the simulated entities should be able to execute. These actions are typically 
represented as action nodes. From the low-level actions we compose subtrees representing more complex 
actions or tasks for the individual entities, and these are further used to build BTs of battle drills for the 
entities. Typically, much work is required to create the first BTs, but as the library grows, it is more and 
more likely that it is possible to reuse already built subtrees when building new BTs. 

In addition to the BTs for the individual entities, we build BTs for battle drills at the unit level for squads and 
platoons. The unit level behaviour models coordinate the behaviour of the individual entities and issue orders 
(i.e. assigns BTs) to the entities. The unit level behaviour models thus represent the leading element of the 
unit. Messages are used for communication between the unit level BT and the entity level BTs, for example 
for sending orders from the unit level BT to the entity level BTs, and sending reports from the entity level 
BTs to the unit level BT. The same principle is used to build additional levels of behaviour models. For 
example for infantry, we have behaviour models at the entity level, squad level, and platoon level. In 
principle there are no limitations on the number of levels of BTs that can be modelled in VBS Control, and 
in the future we also plan to build BTs at the company level. Figure 6-1 illustrates the hierarchy of behaviour 
models. 

To get an overview of the different tasks a unit should be able to carry out, it is possible to use so called 
Universal Task Lists (UTLs). Detailed descriptions of tasks and battle drills can often be found in field 
manuals and of course by consulting subject matter experts (SMEs) and officers. At the unit level we build 
BTs corresponding to the orders that can be issued by the human players/operators. Figure 6-2 shows an 
example of orders that can be issued to generic combat vehicle platoons. The orders are categorized as 
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“Offensive”, “Defensive” or “Move”. For our simulation-supported, two-sided wargames we need to create 
models of battle drills for both Blue and Red forces, since they usually follow different doctrines. 

 
Figure 6-1: Hierarchy of behaviour models. 

 

 
Figure 6-2: Example of orders for combat vehicle platoons. 
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6.1 Example: Model of a Contact Drill for an Infantry Squad 
In this subsection we will first give a short description of a battle drill for enemy contact for a dismounted 
infantry squad. The contact drill has been taken from an unclassified Norwegian field manual for dismounted 
infantry squads [17]. After this we will look at the modelled squad level and entity level BTs for the contact 
drill. 

Description of contact drill: 

1. Soldier 1 (scout) discovers the enemy in front, fires a burst and keeps firing rapid single shots while 
shouting “Contact front!” and seeking cover. This is illustrated in Figure 6-3 (a). 

2. Soldier 2 (squad leader) moves to the right (or left), provides covering fire, and shouts “Covering!”. 
At the same time the rest of the squad forms a line to the left (or right) of Soldier 2. This is illustrated 
in Figure 6-3 (b). 

3. As soon as Soldier 1 is covered by Soldier 2, he or she starts to withdraw to a new position. Soldier 1 
and Soldier 2 conduct backwards leap-frogging, while the others find positions and fire a burst 
followed by single shots. This is illustrated in Figure 6-3 (c). 

4. Soldier 1 and Soldier 2 pass Soldier 3 on their way backwards, and the squad will split into two fire-
teams. Fireteam 1 moves collectively backwards to new positions while Fireteam 2 provides 
covering fire. Afterwards, Fireteam 2 moves backwards to new positions while Fireteam 1 provides 
covering fire. This is illustrated in Figure 6-3 (d). 

5. The leap-frogging continues until they find a position where they can break off contact, and the 
squad can find cover and concealment from the enemy. The squad then forms a line and moves 
towards the cover. This is illustrated in Figure 6-3 (e). 

 
Figure 6-3: Battle drill for enemy contact for a dismounted infantry squad ([17]). 
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6.1.1 Modelled Behaviour Trees for Contact Drill 

Figure 6-4 shows the modelled BT for the squad, and Figure 6-5 shows the modelled BT for the first soldier 
in the squad (Soldier 1). The squad BT for the contact drill will typically be used as a subtree in a BT for a 
squad move order. 

 

Figure 6-4: Squad level behaviour tree for the contact drill. 

 

 
Figure 6-5: Behaviour tree for the contact drill for the first soldier in the squad (Soldier 1). 
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7.0 EXPERIENCES 

We have been working with BTs for about three years. The first year we mostly explored and tested out the 
approach, but for the last two years we have systematically developed BTs for battle drills. BTs have a 
somewhat steeper learning curve than for example FSMs, and it takes some time to become familiar with 
how the control flow nodes work. We found that hands-on experimentation with different control flow 
patterns was very useful to better understand how BTs work, and how to create good BTs. 

The experiences with using BTs to develop behaviour models have so far been very good. Especially the 
composability and modularity that enables subtrees to be reused is very useful and simplifies the 
development process. Often we start by building an initial subtree for an action, and then reuse this in 
multiple places. Later, when we improve the subtree, this improvement will apply to all BTs that use this 
subtree. 

A good visual editor is very helpful for creating BTs. Visual editors let the user rapidly visualize the flow of 
the behaviour and easier understand how the behaviour works. We use the VBS Control Editor, which also 
has a built-in debugger that lets the user add breakpoints and run through a BT step by step while the 
behaviour model is executed in VBS. This functionality is very helpful for pinpointing the source to why the 
entities sometimes do not behave as intended. 

We have found it to be advantageous to have a separate BT handling the internal coordination of a unit, 
which is not tied to a specific entity (or subunit). This way, for example, all the soldiers in a squad can have 
the same BT, and it is not necessary to have a specific BT for the squad leader. This system also makes it 
easier to handle casualties, and the unit will still function if the squad leader is killed. 

One challenge we have found with using BTs, is handling unexpected jumps in the execution of a BT. An 
entity can be doing something specific far down in the tree structure, and then suddenly something 
fundamentally changes about the situation and a very different subtree starts executing instead. When this 
happens, it is important that the entity is reconfigured for the new situation. It is good practice, at the start of 
a subtree, to always make sure things are configured correctly before continuing and not assume anything 
was correctly configured before. 

It is also worth mentioning that the composability and modularity of BT-based behaviour models open up 
opportunities for collaboration on development and sharing of behaviour models of battle drills, for example 
between NATO and partner nations, that mostly have similar doctrines. 

8.0 FURTHER WORK 

A lot of work remains before the library of behaviour models of battle drills is complete. The behaviour 
models also need to be validated, and this will typically be done by face validation by military SMEs and 
officers from the Norwegian Army. Furthermore, the behaviour models will be continuously subjected to 
face validation by the players/operators when they are used in our simulations, and in the beginning we 
expect that the models have to be continuously improved based on feedback from the players. 

We have demonstrated the behaviour models for officers from the Norwegian Army at several occasions, 
and the feedback we have received is very positive. The Norwegian Army has expressed interest in the 
possibility of using the behaviour models in other simulation systems that support BTs as well. To make this 
possible we need to ensure that the models also exist as conceptual models that can be implemented in other 
simulation systems. The BTs in Figure 6-4 and Figure 6-5 are examples of such conceptual models. The 
parts of the models that typically need to be implemented specifically for each simulation system are the task 
nodes (i.e. the leaf nodes in the BTs). 
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We are primarily developing behaviour models for pure constructive simulations with SAF. This generally 
sets lower requirements for how high fidelity the behaviour models for the entities need to have, compared to 
behaviour models for constructive entities that are meant to be used together with virtual entities directly 
controlled by humans. This is an issue we may also need to address in the future, since it may be desirable 
for us to combine virtual and constructive simulations. 

9.0 SUMMARY AND CONCLUSION 

This paper has given an introduction to behaviour trees (BTs), discussed advantages and limitations of BTs, 
and described how we use BTs to build a library of behaviour models of the most important battle drills for 
mechanized infantry platoons. BTs have become very popular, especially for creating behaviours for NPCs 
in computer games, robots, and autonomous vehicles, mainly because they are composable, modular, and 
reactive. These properties also make BTs well suited for developing human behaviour models of moderate 
complexity for semi-automated forces (SAF) in constructive simulations. 

Our experiences with using BTs to develop behaviour models have so far been very good. However, a lot of 
work still remains before our library of behaviour models of battle drills is complete. 

Finally, the composability and modularity of BT-based behaviour models open up opportunities for 
collaboration on development and sharing of behaviour models of battle drills, for example between NATO 
and partner nations that mostly have similar doctrines. 
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